2

SA WG2 Meeting #128bis
S2-188821
20 – 24 August 2018, Sophia Antipolis, France
Source:
Huawei, Hisilicon
Title:
23.742: High reliable deployment via the binding information update
Document for:
Approval

Agenda Item:
6.19
Work Item / Release:
FS_eSBA/Rel-16
Abstract of the contribution: This contribution proposes a solution to support high reliable deployment via the binding information update.
1
Introduction
This solution is to address the Key Issue 4 and in particular on how to maintain the binding between the service instances.
2
Discussion

In Rel-15, except AMF, normally the communication between the NF instances are not changed no matter whether the NF instance is scaling in/out. To improve the high reliability at Rel-16 several solutions have discussed on how to avoid the fixed binding between the UE and NF Service Instance, e.g. store the UE context data at the DB.
Similar as the definition of the AMF Instance at Rel-15, it is assumed that Service Instance is identified by the Service Set and Instance Pointer. Even after we remove the fixed binding between the Service Instance and UE, the UE still has to be routed to the Service Instance within the same set, i.e. limited to the Service Instance which can access the same DB. The binding is just changed from one dedicated Service Instance to the dedicated Service Set.

To complete a 3GPP defined procedure, e.g. registration, the temporarily binding between the UE and one Service Instance is still needed.
Per above consideration, we think the support of the high reliability is not to remove the binding, but to make the binding more flexible. It can be bound to different Instance without the awareness of Service Consumer. Based on the architecture solution described in S2-188052, the NF/service sets within a Unit register the address of Unit into NRF. If the address of the NF/service instance registered in NRF point to the Framework Function, the binding between the service instance and UE can be changed without involving the peer service consumers.
When the Service Producer Instance is communicated per the Service Consumer request, the Service Producer Instance provides a binding identifier (i.e. binding ID) and returned to the Service Consumer. Two type of binding ID is to be defined:

· Service Set ID based, bind to a service set but not limited to a dedicated Instance. For each transaction, the request can be handled by any instance within the Service Set.
· Service Producer Instance ID based, bind to a service instance. Depending on the meaning of Instance ID, it can be the service instance sharing the same Instance ID, or one dedicated Instance.
Due to the introduction of the Service Set ID based binding ID, the service consumer always includes the binding ID of Producer in the message sent to the producer service set regardless whether the temporarily binding is needed or not. The Framework Function in the Unit where the producer service is located route the message per the binding ID information. The binding between the binding ID and Service Producer Instance ID can be changed, e.g. due to NF/service instance scale in/out. So different transaction request may reach to different Service Instance even using the same binding ID. Thus the intention removing the fixed binding between Service Instance to reach the high reliability can be achieved.
3
Proposed modification

It is proposed to modify TS 23.742 as follows:

* * * * Start Change * * * *
6.x
Solution 4.X: High reliable deployment via the binding information stored at Framework Function
6.x.1 Introduction

This solution is to address the Key Issue 4 and in particular how to maintain the bindings between service consumer and respective service producer.

It is based on architecture defined in 6.x NF/ Service Set based Service Framework. When one Service Instance communicate with other Service Instance, it include the binding ID information , which is generated by the service producer. The Service Consumer instance stores the received binding ID until the UE context is released. The binding information, i.e. the binding between the binding ID and service instance, is stored in a new functional module within the Service Framework where the service producer is deployed. When the binding is changed, e.g. the service instance is scaling in/out or failure, the communication peer does not need to be aware. Thus the high reliability can be reached if the service instance to be communicated is replaced, e.g. due to failure.
6.x.2 High level description

Similar as the definition of the AMF Instance at Rel-15, it is assumed that the service instance is identified by a Service Set ID and Instance pointer. When the Service Producer Instance is communicated per the Service Consumer request, the Service Producer Instance provides a binding identifier (i.e. binding ID) and returned to the Service Consumer. The Service Consumer use the binding ID to identify the Producer Instance to be contacted. Two types of bindings ID are defined:

-
Service Set ID based, bind to a service set but not limited to a dedicated Instance.
-
Service Set ID and Instance pointer based. Depending on the meaning of binding ID, it can be bound to a specific service instance but the service instance can be replaced, or only to one dedicated Instance.
The Service Consumer instance stores the received binding ID until the UE context is released, and includes it in the following request targeted to the same Service. When the message reached the Unit where the service producer instance is located, it is routed to a service producer instance based on the binding ID included in the message. The binding between the binding ID and a service producer instance is stored within the Unit, e.g. framework function. The instance Id may change, while the binding Id remains the same. In that case different transactions may reach to different Service Instance even using the same binding ID.
6.x.3 illustrated procedures

The below procedure illustrate how to exchange the binding ID between the consumer and producer. And how the message is routed based on binding ID.

[image: image1.emf]Consumer

Framework

Function

Producer 1

8. Message 2(Producer’s binding ID)

9. Unbind

10. Message 3 (Producer’s binding ID)

Producer 2

13. Message 3(Producer’s binding ID)

4. Res Message 1 (Producer’s binding ID)

Framework

Function

2. Producer Instance

selection

5. Res Message 1 (Producer’s binding ID)

6. Message 2(Producer’s binding ID)

7. select Producer

instance based on

binding ID

11. Binding doesn't exist,

select instance based on

set ID

1. Message 1(Producer’s set ID, Consumer’s binding ID)

14. Res Message 3(new Producer’s binding ID)

15. Res Message 3(new Producer’s binding ID)

3. Message 1(Producer’s set ID, Consumer’s binding ID)

Figure 6.4.x.3-1 Binding information stored at the Framework Function and its usage
The binding between service instance and the binding ID is handling within the Unit. As an example, the binding can be established when the service instance is started, e.g. as part of the service instance registration procedure. The Service Framework includes a function module which stores the following information: the Service Set ID, Instance Pointer, IP address. Thus no matter which type binding ID is used by the service instance later, the Function in the Unit, e.g. Framework Function, can always route the message to the service instance.

Binding ID exchange between the consumer and producer:
1. The consumer allocates a binding ID, which is used for following transaction request from the peer service instance, and include this information in the message sent to producer. The type of binding ID consumer allocated is per how the consumer prefer following transaction request from peer side communicate with it.
If the following transaction request from peer side is preferred to be handled by any instance within the same service consumer set, the binding ID is Service Set ID based. If the following transaction request from peer side is prefer to be handled by this instance, the binding ID is Service Set ID and Instance Pointer based.
NOTE: the consumer’s binding ID is included if the consumer can behave as service producer
2. The Function in the Unit, e.g. the framework function, selects the producer instance.
3. The Message 1 is forwarded to the selected producer instance.
4. The producer instance provides a producer’s binding ID to the consumer instance in response message. The type of binding ID allocated is similar as the step 1.
5. The response message is forwarded to the Consumer. The Consumer stores the received Producer’s binding ID as part of the UE context.
Binding ID usage for the following transaction:
6. Consumer sends message 2, including producer’s binding ID received at step 5.

7. Producer 1 is selected based on producer’s binding ID.

8. Message 2 is forwarded to Producer 1.
Binding information updated:
9. The binding between the binding ID and Producer 1 is released, e.g. due to producer instance scale in/out.
Message handling after the binding information is released:
10. The consumer sends Message 3 which include the producer’s binding ID provided by Producer 1.

11. Since there is no producer instance associated with the binding ID, but the binding ID includes the Service Set ID information, a new producer instance is selected based on Producer service set ID.
12. Message 3 is forwarded to Producer 2.
13. The Producer 2 provides a new producer’s binding ID which is associated with producer 2 or this Set.

14. The response message is forwarded to the Consumer.
6.x.4 Impacts on existing NFs, NF Services and Interfaces

Editor's note: This clause describes impacts to existing services and interfaces. .
6.x.5 Evaluation of the Solution

Editor's note:
This clause provides an evaluation of the solution.

* * * * End Change * * *
3GPP

Consumer
Framework Function
Producer 1
8. Message 2(Producer’s binding ID)
9. Unbind
10. Message 3 (Producer’s binding ID)
Producer 2
13. Message 3(Producer’s binding ID)
4. Res Message 1 (Producer’s binding ID)
Framework Function
2. Producer Instance selection
5. Res Message 1 (Producer’s binding ID)
6. Message 2(Producer’s binding ID)
7. select Producer instance based on binding ID
11. Binding doesn't exist, select instance based on set ID
1. Message 1(Producer’s set ID, Consumer’s binding ID)
14. Res Message 3(new Producer’s binding ID)
15. Res Message 3(new Producer’s binding ID)
3. Message 1(Producer’s set ID, Consumer’s binding ID)

